• Influence of Internal Channel Geometry of Gas Turbine Blade on Flow Structure and Heat Transfer

    分类: 动力与电气工程 >> 工程热物理学 提交时间: 2018-01-24 合作期刊: 《热科学学报》

    摘要: This paper presents the study of the influence of channel geometry on the flow structure and heat transfer, and also their correlations on all the walls of a radial cooling passage model of a gas turbine blade. The investigations focus on the heat transfer and aerodynamic measurements in the channel, which is an accurate representation of the configuration used in aeroengines. Correlations for the heat transfer coefficient and the pressure drop used in the design of internal cooling passages are often developed from simplified models. It is important to note that real engine passages do not have perfect rectangular cross sections, but include a corner fillets, ribs with fillet radii and a special orientation. Therefore, this work provides detailed fluid flow and heat transfer data for a model of radial cooling geometry which has very realistic features.

  • Flow Structure and Heat Exchange Analysis in Internal Cooling Channel of Gas Turbine Blade

    分类: 物理学 >> 普通物理:统计和量子力学,量子信息等 提交时间: 2017-11-02 合作期刊: 《热科学学报》

    摘要: Steam pipelines applied in power units operate at high pressures and temperatures. In addition, to stress from the pipeline pressure also arise high thermal stresses in transient states such as start-up, shutdown or a load change of the power unit. Time-varying stresses are often the cause of the occurrence of fatigue cracks since the plastic deformations appear at the stress concentration regions. To determine the transient temperature of the steam along the steam flow path and axisymmetric temperature distribution in the pipeline wall, a numerical model of pipeline heating was proposed. To determine the transient temperature of the steam and pipeline wall the finite volume method (FVM) was used Writing the energy conservation equations for control areas around all the nodes gives a system of ordinary differential equations with respect to time. The system of ordinary differential equations of the first order was solved by the Runge-Kutta method of the fourth order to give the time-temperature changes at the nodes lying in the area of the wall and steam. The steam pressure distribution along pipeline was determined from the solution of the momentum conservation equation. Based on the calculated temperature distribution, thermal stresses were determined. The friction factor was calculated using the correlations of Churchill and Haaland, which were proposed for pipes with a rough inner surface. To assess the accuracy of the proposed model, numerical calculations were also performed for the thin-walled pipe, and the results were compared to the exact analytical solution. Comparison of the results shows that the accuracy of the proposed model of pipeline heating is very satisfactory. The paper presents examples of the determination of the transient temperature of the steam and the wall.